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My research is at the intersection of commutative algebra and representation theory. Within
commutative algebra, I am interested in the structure theory of finite free resolutions and the closely
related study of perfect ideals. The theory of linkage has been applied in this field to great effect, and
in §1 we survey some of the important results from the literature.

Representation theory enters the picture from two surprising directions. The first is that certain
Schubert (ind-)varieties carry exactly the right symmetry to study linkage. This perspective allows
us to unify the results of §1 and it makes explicit predictions regarding the behavior of perfect ideals
in more complicated cases, as we explain in §2.

The second is that the same objects in representation theory also naturally appear in the algebraic
construction of certain generic free resolutions, and this is briefly discussed in §3. This connection
was discovered by Weyman, and most of my work has focused on analyzing it. This circle of ideas
can be summarized as follows:

free resolutions and perfect ideals representation theory

linkage

§1
various classical techniques

§3

generic free resolutions

§2
linked Schubert varieties

To set up the discussion precisely, let R be a commutative Noetherian ring. We say that an ideal
I ⊂ R is perfect if c ∶= grade(I), the maximal length of an regular sequence contained in I, is equal
to the projective dimension pdimR/I. For simplicity of exposition, we assume R is a regular local
(or graded) ring, with maximal ideal m and residue field k. This is the primary case of interest. In
this situation the notions of grade and codimension coincide, and I being perfect is equivalent to
R/I being Cohen-Macaulay. In particular, if R is a standard graded polynomial ring, this amounts
to the study of arithmetically Cohen-Macaulay subschemes of projective space.

1. Past results in the field

There has been an extensive amount of work analyzing the structure of perfect ideals I ⊂ R. For
c = 1 the problem is trivial, as the ideal of a hypersurface is generated by a single equation. The first
major result in this area dates back to the 1890s, when Hilbert proved a structure theorem for ideals
I in a polynomial ring with pdimR/I = 2 [8]. This was generalized by Burch in 1968 to arbitrary
commutative rings [3]. Using the Hilbert-Burch theorem, one concludes that if c = 2, the ideal I is
generated by the (n − 1) × (n − 1) minors of a n × (n − 1) matrix, where n = µ(I) is the minimal
number of generators of I.

The situation becomes more mysterious for c ≥ 3, and many authors throughout the late 20th
century have addressed various cases which we now briefly survey. It is helpful to introduce two
numerical quantities to assist in organizing the story:

● The deviation d of I is the quantity n − c. Note that n ≥ c always, with equality iff I is a
complete intersection. Hence the deviation is a measurement of how far an ideal is from
being a complete intersection.
● The type t of I is the minimal number of generators of the canonical module ExtcR(R/I, R)
of R/I. It is equal to the last Betti number bc for a minimal free resolution of R/I.

The ring R/I is Gorenstein exactly when t = 1, and we also refer to the ideal I itself as being Goren-
stein in this case. In 1977, Buchsbaum and Eisenbud characterizedGorenstein ideals of codimension
c = 3 [2]. Explicitly, I is generated by the (n − 1) × (n − 1) pfaffians of a n × n skew matrix. Here the
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deviation d = n−3 is necessarily even; the impossibility of odd d was established byWatanabe a few
years prior in 1973 using linkage [14]. Also using linkage, one can also settle the case c = 3, d = 1. All
values of t ≥ 2 are possible here, although the description of I is slightly different for t even versus t
odd.

There is no analogous uniform characterization of Gorenstein ideals with c ≥ 4, but certain spe-
cial cases have been studied. In 1974, Kunz proved that d = t = 1 is impossible for arbitrary c,
i.e. that Gorenstein ideals can never have deviation 1 [10]. It was surprisingly difficult to come up
with nontrivial examples of Gorenstein ideals of deviation 2. For (c, d , t) = (4, 2, 1), Herzog-Miller
(1985) and Vasconcelos-Villarreal (1986) proved under mild hypotheses that any such I must be a
hypersurface section of the case (c, d , t) = (3, 2, 1) already discussed [7], [13].
But also in 1985, Huneke andUlrich produced a new interesting family ofGorenstein ideals of odd

codimension c ≥ 5with d = 2 [9]. Their construction alsomakes sense for c = 3, but it coincides with
the Buchsbaum-Eisenbud example in that case. In 1988, Lopez showed that if (c, d , t) = (5, 2, 1) and
I is in the linkage class of a complete intersection (licci), then it must be either a double hypersurface
section of an ideal with (c, d , t) = (3, 2, 1), or a specialization of the c = 5 Huneke-Ulrich example
[11]. He also produced a new family of Gorenstein ideals of even codimension c ≥ 6, t = 2.

2. A unified perspective

The list of results given in §1 is by no means exhaustive, but progress in this area has slowed
down since this flurry of activity in the 70s and 80s. Indeed, the mixed bag of classification and
non-existence results presented above does not suggest any obvious patterns, only that the situation
becomes more complicated as the values of c, d , t increase. Moreover, all families of perfect ideals
described above are licci. There exist non-licci perfect ideals with c ≥ 3, but their deformation theory
is significantly more complicated. Their study is undoubtedly important as well, but one does not
expect clean classification results akin to the ones surveyed above in this greater generality.

Restricting our attention to the licci case, we have the following natural questions.

(1) Can we classify all licci ideals with a given grade c, deviation d, and type t?
(2) All licci ideals are perfect. When (in terms of c, d , t) can we guarantee that perfect ideals are

licci?

Assuming equicharacteristic zero, there is a conjectural answer to both questions, which we1 can
prove for c = 3 [5]. Given the seemingly disparate examples discussed above, it is perhaps surprising
that an answer—even if conjectural—exists at all! It reveals a pattern to the apparent chaos, unify-
ing all of the aforementioned examples in a single framework. It also reveals a path forward into
previously inaccessible territory. For example, there are exactly 90 families of perfect ideals with
(c, d , t) = (3, 2, 4), a case which would’ve been intractable with previously existing tools.

The likely reason that this pattern has been previously overlooked is that it originates froma rather
unexpected source. Some heavy setup is needed to state it; we will clarify the situation with some
examples afterwards.

1This is joint work with Jerzy Weyman and Lorenzo Guerrieri.
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Conjecture 1 (The linkage class of a complete intersection). Fix integers c ≥ 2, d ≥ 0, and t ≥ 1. Let
T denote the graph

xc−2 ⋯ x1 u y1 ⋯ yd

z1

⋮

zt
To this graph there is an associated Kac-Moody Lie algebra g and group G. If T is a Dynkin diagram,
then these are finite-dimensional.

Let P+xc−2 be the maximal positive parabolic associated to the vertex xc−2, and P−z1 the maximal neg-
ative parabolic associated to z1. The homogeneous space G/P+xc−2 can be viewed as a projective (ind-
)variety, inside of which there is a Schubert (ind-)variety Xw of codimension c that is complementary
to the open P−z1-orbit. Explicitly w is the element sz1 susx1⋯sxc−2 of the Weyl groupW . For every p ∈ Xw ,
the local defining ideal of Xw in G/P+xc−2 at p is perfect of grade c, deviation ≤ d, and type ≤ t.

(1) Let I ⊂ R be licci of grade c, deviation ≤ d, and type ≤ t. Then there exists a map SpecR →
G/P+xc−2 pulling back the defining equations of Xw to generators of I. Let k denote the residue
field of R. Then the P−z1-orbit containing the resulting k-point of Xw is independent of the map
chosen. Thus P−z1-orbits in Xw are in bijection with families of such ideals I.

(2) (Licci conjecture) All perfect ideals of grade c, deviation d, and type t are licci if and only if T
is a Dynkin diagram.

The setup of the conjecture is somewhat imprecise for the non-Dynkin cases, but we avoid dis-
cussing technical details here. AssumingT isDynkin, we can show the existence of themap SpecR →
G/P+xc−2 in (1), exploiting the fact that Xw is geometrically linked to another Schubert variety. Even
without knowing uniqueness of the P−z1-orbit claimed in (1), we can already conclude that there are
finitely many families of licci ideals with the corresponding grade, deviation, and type, simply be-
cause there are finitely many orbits. These orbits are in correspondence with certain double cosets
of the Weyl group, and thus they may be algorithmically enumerated.

Here is a sketch of how this conjecture recovers the assortment of classification results stated
previously.

● (c, d , t) = (2, n−2, n−1). The graph is A2n−2 and the homogeneous space isGr(n−1, 2n−1).
Representing points of this space by (n− 1)×(2n− 1)matrices, the P−z1-orbits are determined
by the rank of a particular (n−1)×n block. The open orbit is where this rank is maximal, and
the complement Xw is thus cut out by the (n−1)×(n−1)minors of the block, recovering the
generic Hilbert-Burch ideal. It is comprised of n − 1 orbits, corresponding to all possibilities
for the deviation between 0 and n − 2.
● (c, d , t) = (3, n − 3, 1). The graph is Dn. The homogeneous space is the orthogonal Grass-
mannian OG(n, 2n). The Schubert variety Xw has ⌊ n−12 ⌋ orbits. Notice that as a function
of n, this increases by 1 only when n is odd. This reflects Watanabe’s result that there are no
grade 3 Gorenstein ideals minimally generated by an even number of elements. The defining
equations of Xw along each orbit recovers a generic Buchsbaum-Eisenbud example.
● (c, d , t) = (n − 1, 1, 1). The graph is Dn again, but this time the homogeneous space is just a
smooth quadric hypersurface in P2n−1, namely the vanishing locus of the quadratic form on
the standard representation of SO(2n). There is only a single P−z1-orbit in Xw . But (c, d , t) =
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(n − 1, 0, 1) already accounts for this orbit, i.e. it corresponds to a complete intersection. So
the conjecture correctly predicts Kunz’s result that there are noGorenstein ideals of deviation
1.
● (c, d , t) = (c, 2, 1), with c ≥ 3. The graph is Ec+2 (with E5 = D5). The deceptively simple
structure of Gorenstein ideals of deviation 2 witnessed in low codimension can be attributed
to the fact that G/Pxc−2 is a relatively “small” homogeneous space for Ec+2. In particular,
Xw has only a few orbits. The case c = 3 has already been discussed: there are two orbits,
corresponding to complete intersections and ideals generated by the 4×4 pfaffians of a 5× 5
skewmatrix. Increasing c to 4 does not increase the number of orbits, reflecting the results of
Herzog-Miller and Vasconcelos-Villarreal. But for c = 5 an additional orbit appears, yielding
the first Huneke-Ulrich example. Increasing to c = 6 introduces three new orbits, one of
which was described by Lopez.
● Theprevious examples have resulted in relatively few orbits. For contrast, consider (c, d , t) =
(3, 2, 4). The graph is E8, and the Schubert variety Xw has 108 orbits. Of these, 18 are already
accounted for by smaller d or t. As Conjecture 1 is known to hold for c = 3, we conclude that
there are 90 families of grade 3 perfect ideals with deviation 2 and type 4.

3. The case c = 3

The condition that I ⊂ R is a perfect ideal can be restated purely in terms of free resolutions: if F
is a minimal free resolution of R/I, then its dual F∗ is also acyclic (resolving the canonical module).
Returning to the well-understood case c = 2, recall that the classification of perfect ideals comes as
a corollary of the Hilbert-Burch theorem, which concerns free resolutions of length 2. Given this,
it should not be surprising that the machinery used to prove Conjecture 1 for c = 3 comes from the
structure theory of free resolutions of length 3.

More precisely, the Hilbert-Burch theorem describes the “generic example” of a free resolution

0→ Rn−1 → Rn → R.

Weyman constructed generic free resolutions of length 3 in 1989, which are significantly more com-
plicated [16]. Some details were unresolved in the original paper, and the structure of the generic
resolution remained opaque until 2018, when a deep connection to theKac-Moody Lie algebramen-
tioned in Conjecture 1 resolved themissing details and greatly elucidated the structure of the generic
examples [15]. Ongoing work on this project has gradually demystified the appearance of this Lie
algebra, and the current formulation of Conjecture 1 and its resolution for c = 3 using Weyman’s
construction marks a triumph of the theory [5]. This connection also enables us to describe free
resolutions of all grade 3 licci ideals using representation theory, vastly generalizing the resolutions
known for the familiar t = 1 and d = 1 cases [6]. Some cases of the free resolution are explicitly
described in [12].

4. Future directions

There are endless possibilities for future work, an obvious one being the resolution of Conjecture 1
in general.

● An offshoot of (1) is a conjectural classification of all rigid licci algebras. Given a P−z1-orbit
Y , let Cσ be the smallest finite-dimensional Schubert cell meeting the orbit. The completion
of the local ring of Xw ∩ Cσ at a point p ∈ Y ∩ Cσ is conjecturally a rigid licci algebra Rσ ,
and we expect all such algebras to arise in this manner. It is possible to read off data such as
the dimension, embedding codimension, deviation, and type of Rσ from combinatorics of
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σ ∈ W . This conjecture has been confirmed to match an exhaustive list up to dimension 12
proven by Ulrich.
● For the “if ” part of (2), there are only finitely many remaining cases to consider, all coming
from Dynkin diagrams En. As c = 3 is settled, the remaining cases either have d = 1 or t = 1.
It is sufficient to consider one of these two cases because they are linked, so we focus on t = 1.
If the armof length 2 is the left arm, thenwe getGorenstein ideals of grade 4with deviation
≤ 4. In this setting there is a partial analogue ofWeyman’s theory of generic free resolutions,
so with more work the proof of the c = 3 licci conjecture might carry over.

Otherwise, the arm of length 2 is the right arm, corresponding to the remaining two cases
of Gorenstein ideals of grade 5 or 6 with deviation 2.
● At one point it was conjectured that Gorenstein ideals of deviation 2 are all licci, perhaps
because so few examples were known. However, the “only if ” part of (2) makes a different
prediction: non-licci ideals with d = 2 and t = 1 should appear when c ≥ 7. It is not clear
how one might produce such an example.
● More generally, it remains a tantalizing question whether this theory can be extended to ex-
plain the behavior of non-licci perfect ideals, examples of which abound for c ≥ 3. There are
particularly simple examples with (c, d , t) = (3, 3, 3), (3, 5, 2), (3, 2, 5), or (4, 5, 1). Exam-
ples of the first three are given in [4], and the prototypical “Tom and Jerry” examples of [1]
belong to the last case. The T-shaped graph in each of these instances is an affineDynkin di-
agram. The representation theory of the associated Lie algebra is an enormous industry, and
a simple starting question is whether it can be used to produce these examples of non-licci
perfect ideals.
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